Metamath Proof Explorer


Theorem fnotaovb

Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion fnotaovb FFnA×BCADBCFD=RCDRF

Proof

Step Hyp Ref Expression
1 opelxpi CADBCDA×B
2 fnopafvb FFnA×BCDA×BF'''CD=RCDRF
3 1 2 sylan2 FFnA×BCADBF'''CD=RCDRF
4 3 3impb FFnA×BCADBF'''CD=RCDRF
5 df-aov CFD=F'''CD
6 5 eqeq1i CFD=RF'''CD=R
7 df-ot CDR=CDR
8 7 eleq1i CDRFCDRF
9 4 6 8 3bitr4g FFnA×BCADBCFD=RCDRF