Metamath Proof Explorer


Theorem fnsnfv

Description: Singleton of function value. (Contributed by NM, 22-May-1998) (Proof shortened by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion fnsnfv F Fn A B A F B = F B

Proof

Step Hyp Ref Expression
1 imasng B A F B = y | B F y
2 1 adantl F Fn A B A F B = y | B F y
3 velsn y F B y = F B
4 eqcom y = F B F B = y
5 3 4 bitri y F B F B = y
6 fnbrfvb F Fn A B A F B = y B F y
7 5 6 bitr2id F Fn A B A B F y y F B
8 7 abbi1dv F Fn A B A y | B F y = F B
9 2 8 eqtr2d F Fn A B A F B = F B