Metamath Proof Explorer


Theorem fnwe2val

Description: Lemma for fnwe2 . Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses fnwe2.su z=FxS=U
fnwe2.t T=xy|FxRFyFx=FyxUy
Assertion fnwe2val aTbFaRFbFa=FbaFa/zSb

Proof

Step Hyp Ref Expression
1 fnwe2.su z=FxS=U
2 fnwe2.t T=xy|FxRFyFx=FyxUy
3 vex aV
4 vex bV
5 fveq2 x=aFx=Fa
6 fveq2 y=bFy=Fb
7 5 6 breqan12d x=ay=bFxRFyFaRFb
8 5 6 eqeqan12d x=ay=bFx=FyFa=Fb
9 simpl x=ay=bx=a
10 fvex FxV
11 10 1 csbie Fx/zS=U
12 5 csbeq1d x=aFx/zS=Fa/zS
13 11 12 eqtr3id x=aU=Fa/zS
14 13 adantr x=ay=bU=Fa/zS
15 simpr x=ay=by=b
16 9 14 15 breq123d x=ay=bxUyaFa/zSb
17 8 16 anbi12d x=ay=bFx=FyxUyFa=FbaFa/zSb
18 7 17 orbi12d x=ay=bFxRFyFx=FyxUyFaRFbFa=FbaFa/zSb
19 3 4 18 2 braba aTbFaRFbFa=FbaFa/zSb