Metamath Proof Explorer


Theorem fourierdlem1

Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem1.a φA*
fourierdlem1.b φB*
fourierdlem1.q φQ:0MAB
fourierdlem1.i φI0..^M
fourierdlem1.x φXQIQI+1
Assertion fourierdlem1 φXAB

Proof

Step Hyp Ref Expression
1 fourierdlem1.a φA*
2 fourierdlem1.b φB*
3 fourierdlem1.q φQ:0MAB
4 fourierdlem1.i φI0..^M
5 fourierdlem1.x φXQIQI+1
6 iccssxr QIQI+1*
7 6 5 sselid φX*
8 iccssxr AB*
9 elfzofz I0..^MI0M
10 4 9 syl φI0M
11 3 10 ffvelcdmd φQIAB
12 8 11 sselid φQI*
13 iccgelb A*B*QIABAQI
14 1 2 11 13 syl3anc φAQI
15 fzofzp1 I0..^MI+10M
16 4 15 syl φI+10M
17 3 16 ffvelcdmd φQI+1AB
18 8 17 sselid φQI+1*
19 elicc4 QI*QI+1*X*XQIQI+1QIXXQI+1
20 12 18 7 19 syl3anc φXQIQI+1QIXXQI+1
21 5 20 mpbid φQIXXQI+1
22 21 simpld φQIX
23 1 12 7 14 22 xrletrd φAX
24 iccleub QI*QI+1*XQIQI+1XQI+1
25 12 18 5 24 syl3anc φXQI+1
26 elicc4 A*B*QI+1*QI+1ABAQI+1QI+1B
27 1 2 18 26 syl3anc φQI+1ABAQI+1QI+1B
28 17 27 mpbid φAQI+1QI+1B
29 28 simprd φQI+1B
30 7 18 2 25 29 xrletrd φXB
31 elicc1 A*B*XABX*AXXB
32 1 2 31 syl2anc φXABX*AXXB
33 7 23 30 32 mpbir3and φXAB