Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierdlem1.a | |
|
fourierdlem1.b | |
||
fourierdlem1.q | |
||
fourierdlem1.i | |
||
fourierdlem1.x | |
||
Assertion | fourierdlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem1.a | |
|
2 | fourierdlem1.b | |
|
3 | fourierdlem1.q | |
|
4 | fourierdlem1.i | |
|
5 | fourierdlem1.x | |
|
6 | iccssxr | |
|
7 | 6 5 | sselid | |
8 | iccssxr | |
|
9 | elfzofz | |
|
10 | 4 9 | syl | |
11 | 3 10 | ffvelcdmd | |
12 | 8 11 | sselid | |
13 | iccgelb | |
|
14 | 1 2 11 13 | syl3anc | |
15 | fzofzp1 | |
|
16 | 4 15 | syl | |
17 | 3 16 | ffvelcdmd | |
18 | 8 17 | sselid | |
19 | elicc4 | |
|
20 | 12 18 7 19 | syl3anc | |
21 | 5 20 | mpbid | |
22 | 21 | simpld | |
23 | 1 12 7 14 22 | xrletrd | |
24 | iccleub | |
|
25 | 12 18 5 24 | syl3anc | |
26 | elicc4 | |
|
27 | 1 2 18 26 | syl3anc | |
28 | 17 27 | mpbid | |
29 | 28 | simprd | |
30 | 7 18 2 25 29 | xrletrd | |
31 | elicc1 | |
|
32 | 1 2 31 | syl2anc | |
33 | 7 23 30 32 | mpbir3and | |