Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | fprg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | elex | |
|
3 | 1 2 | anim12i | |
4 | elex | |
|
5 | elex | |
|
6 | 4 5 | anim12i | |
7 | neeq1 | |
|
8 | opeq1 | |
|
9 | 8 | preq1d | |
10 | preq1 | |
|
11 | 9 10 | feq12d | |
12 | 7 11 | imbi12d | |
13 | neeq2 | |
|
14 | opeq1 | |
|
15 | 14 | preq2d | |
16 | preq2 | |
|
17 | 15 16 | feq12d | |
18 | 13 17 | imbi12d | |
19 | opeq2 | |
|
20 | 19 | preq1d | |
21 | eqidd | |
|
22 | preq1 | |
|
23 | 20 21 22 | feq123d | |
24 | 23 | imbi2d | |
25 | opeq2 | |
|
26 | 25 | preq2d | |
27 | eqidd | |
|
28 | preq2 | |
|
29 | 26 27 28 | feq123d | |
30 | 29 | imbi2d | |
31 | 0ex | |
|
32 | 31 | elimel | |
33 | 31 | elimel | |
34 | 31 | elimel | |
35 | 31 | elimel | |
36 | 32 33 34 35 | fpr | |
37 | 12 18 24 30 36 | dedth4h | |
38 | 3 6 37 | syl2an | |
39 | 38 | 3impia | |