Description: Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodeq0g.kph | |
|
fprodeq0g.a | |
||
fprodeq0g.b | |
||
fprodeq0g.c | |
||
fprodeq0g.b0 | |
||
Assertion | fprodeq0g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodeq0g.kph | |
|
2 | fprodeq0g.a | |
|
3 | fprodeq0g.b | |
|
4 | fprodeq0g.c | |
|
5 | fprodeq0g.b0 | |
|
6 | nfcvd | |
|
7 | 1 6 2 3 4 5 | fprodsplit1f | |
8 | diffi | |
|
9 | 2 8 | syl | |
10 | eldifi | |
|
11 | 10 3 | sylan2 | |
12 | 1 9 11 | fprodclf | |
13 | 12 | mul02d | |
14 | 7 13 | eqtrd | |