Metamath Proof Explorer


Theorem frc

Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 19-Nov-2014)

Ref Expression
Hypothesis frc.1 BV
Assertion frc RFrABABxByB|yRx=

Proof

Step Hyp Ref Expression
1 frc.1 BV
2 fri BVRFrABABxBzB¬zRx
3 1 2 mpanl1 RFrABABxBzB¬zRx
4 3 3impb RFrABABxBzB¬zRx
5 breq1 y=zyRxzRx
6 5 rabeq0w yB|yRx=zB¬zRx
7 6 rexbii xByB|yRx=xBzB¬zRx
8 4 7 sylibr RFrABABxByB|yRx=