Metamath Proof Explorer


Theorem frcond4

Description: The friendship condition, alternatively expressed by neighborhoods: in a friendship graph, the neighborhoods of two different vertices have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 29-Mar-2021) (Proof shortened by AV, 30-Dec-2021)

Ref Expression
Hypotheses frcond1.v V=VtxG
frcond1.e E=EdgG
Assertion frcond4 GFriendGraphkVlVkxVGNeighbVtxkGNeighbVtxl=x

Proof

Step Hyp Ref Expression
1 frcond1.v V=VtxG
2 frcond1.e E=EdgG
3 1 2 frcond3 GFriendGraphkVlVklxVGNeighbVtxkGNeighbVtxl=x
4 eldifsn lVklVlk
5 necom lkkl
6 5 biimpi lkkl
7 6 anim2i lVlklVkl
8 4 7 sylbi lVklVkl
9 8 anim2i kVlVkkVlVkl
10 3anass kVlVklkVlVkl
11 9 10 sylibr kVlVkkVlVkl
12 3 11 impel GFriendGraphkVlVkxVGNeighbVtxkGNeighbVtxl=x
13 12 ralrimivva GFriendGraphkVlVkxVGNeighbVtxkGNeighbVtxl=x