Metamath Proof Explorer


Theorem frege91

Description: Every result of an application of a procedure R to an object X follows that X in the R -sequence. Proposition 91 of Frege1879 p. 68. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x XU
frege91.y YV
frege91.r RW
Assertion frege91 XRYXt+RY

Proof

Step Hyp Ref Expression
1 frege91.x XU
2 frege91.y YV
3 frege91.r RW
4 2 frege63c [˙Y/a]˙XRaRhereditaryfaXRaaf[˙Y/a]˙af
5 sbcbr2g YV[˙Y/a]˙XRaXRY/aa
6 csbvarg YVY/aa=Y
7 6 breq2d YVXRY/aaXRY
8 5 7 bitrd YV[˙Y/a]˙XRaXRY
9 2 8 ax-mp [˙Y/a]˙XRaXRY
10 sbcel1v [˙Y/a]˙afYf
11 10 imbi2i aXRaaf[˙Y/a]˙afaXRaafYf
12 11 imbi2i RhereditaryfaXRaaf[˙Y/a]˙afRhereditaryfaXRaafYf
13 4 9 12 3imtr3i XRYRhereditaryfaXRaafYf
14 13 alrimiv XRYfRhereditaryfaXRaafYf
15 1 2 3 frege90 XRYfRhereditaryfaXRaafYfXRYXt+RY
16 14 15 ax-mp XRYXt+RY