Metamath Proof Explorer


Theorem frege91

Description: Every result of an application of a procedure R to an object X follows that X in the R -sequence. Proposition 91 of Frege1879 p. 68. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x X U
frege91.y Y V
frege91.r R W
Assertion frege91 X R Y X t+ R Y

Proof

Step Hyp Ref Expression
1 frege91.x X U
2 frege91.y Y V
3 frege91.r R W
4 2 frege63c [˙Y / a]˙ X R a R hereditary f a X R a a f [˙Y / a]˙ a f
5 sbcbr2g Y V [˙Y / a]˙ X R a X R Y / a a
6 csbvarg Y V Y / a a = Y
7 6 breq2d Y V X R Y / a a X R Y
8 5 7 bitrd Y V [˙Y / a]˙ X R a X R Y
9 2 8 ax-mp [˙Y / a]˙ X R a X R Y
10 sbcel1v [˙Y / a]˙ a f Y f
11 10 imbi2i a X R a a f [˙Y / a]˙ a f a X R a a f Y f
12 11 imbi2i R hereditary f a X R a a f [˙Y / a]˙ a f R hereditary f a X R a a f Y f
13 4 9 12 3imtr3i X R Y R hereditary f a X R a a f Y f
14 13 alrimiv X R Y f R hereditary f a X R a a f Y f
15 1 2 3 frege90 X R Y f R hereditary f a X R a a f Y f X R Y X t+ R Y
16 14 15 ax-mp X R Y X t+ R Y