Metamath Proof Explorer


Theorem fresfo

Description: Conditions for a restriction to be an onto function. Part of fresf1o . (Contributed by AV, 29-Sep-2024)

Ref Expression
Assertion fresfo FunFCranFFF-1C:F-1ContoC

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 1 biimpi FunFFFndomF
3 2 adantr FunFCranFFFndomF
4 sseqin2 CranFranFC=C
5 4 biimpi CranFranFC=C
6 5 eqcomd CranFC=ranFC
7 6 adantl FunFCranFC=ranFC
8 eqidd FunFCranFF-1C=F-1C
9 3 7 8 rescnvimafod FunFCranFFF-1C:F-1ContoC