Metamath Proof Explorer


Theorem fsetsniunop

Description: The class of all functions from a (proper) singleton into B is the union of all the singletons of (proper) ordered pairs over the elements of B as second component. (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsniunop S V f | f : S B = b B S b

Proof

Step Hyp Ref Expression
1 fsn2g S V g : S B g S B g = S g S
2 simpl g S B g = S g S g S B
3 opeq2 b = g S S b = S g S
4 3 sneqd b = g S S b = S g S
5 4 eqeq2d b = g S g = S b g = S g S
6 5 adantl g S B g = S g S b = g S g = S b g = S g S
7 simpr g S B g = S g S g = S g S
8 2 6 7 rspcedvd g S B g = S g S b B g = S b
9 1 8 syl6bi S V g : S B b B g = S b
10 simpl S V b B S V
11 simpr S V b B b B
12 10 11 fsnd S V b B S b : S B
13 12 adantr S V b B g = S b S b : S B
14 simpr S V b B g = S b g = S b
15 14 feq1d S V b B g = S b g : S B S b : S B
16 13 15 mpbird S V b B g = S b g : S B
17 16 ex S V b B g = S b g : S B
18 17 rexlimdva S V b B g = S b g : S B
19 9 18 impbid S V g : S B b B g = S b
20 velsn g S b g = S b
21 20 bicomi g = S b g S b
22 21 rexbii b B g = S b b B g S b
23 19 22 bitrdi S V g : S B b B g S b
24 vex g V
25 feq1 f = g f : S B g : S B
26 24 25 elab g f | f : S B g : S B
27 eliun g b B S b b B g S b
28 23 26 27 3bitr4g S V g f | f : S B g b B S b
29 28 eqrdv S V f | f : S B = b B S b