Metamath Proof Explorer


Theorem frlmbas3

Description: An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019)

Ref Expression
Hypotheses frlmbas3.f F=RfreeLModN×M
frlmbas3.b B=BaseR
frlmbas3.v V=BaseF
Assertion frlmbas3 RWXVNFinMFinINJMIXJB

Proof

Step Hyp Ref Expression
1 frlmbas3.f F=RfreeLModN×M
2 frlmbas3.b B=BaseR
3 frlmbas3.v V=BaseF
4 3 eleq2i XVXBaseF
5 4 biimpi XVXBaseF
6 5 adantl RWXVXBaseF
7 6 3ad2ant1 RWXVNFinMFinINJMXBaseF
8 simpl RWXVRW
9 xpfi NFinMFinN×MFin
10 8 9 anim12i RWXVNFinMFinRWN×MFin
11 10 3adant3 RWXVNFinMFinINJMRWN×MFin
12 1 2 frlmfibas RWN×MFinBN×M=BaseF
13 11 12 syl RWXVNFinMFinINJMBN×M=BaseF
14 7 13 eleqtrrd RWXVNFinMFinINJMXBN×M
15 elmapi XBN×MX:N×MB
16 14 15 syl RWXVNFinMFinINJMX:N×MB
17 simp3l RWXVNFinMFinINJMIN
18 simp3r RWXVNFinMFinINJMJM
19 16 17 18 fovcdmd RWXVNFinMFinINJMIXJB