Metamath Proof Explorer


Theorem frrdmcl

Description: Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypothesis frrrel.1 F=frecsRAG
Assertion frrdmcl XdomFPredRAXdomF

Proof

Step Hyp Ref Expression
1 frrrel.1 F=frecsRAG
2 predeq3 z=XPredRAz=PredRAX
3 2 sseq1d z=XPredRAzdomFPredRAXdomF
4 eqid f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
5 4 1 frrlem8 zdomFPredRAzdomF
6 3 5 vtoclga XdomFPredRAXdomF