Metamath Proof Explorer


Theorem fsn2

Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004)

Ref Expression
Hypothesis fsn2.1 AV
Assertion fsn2 F:ABFABF=AFA

Proof

Step Hyp Ref Expression
1 fsn2.1 AV
2 1 snid AA
3 ffvelcdm F:ABAAFAB
4 2 3 mpan2 F:ABFAB
5 ffn F:ABFFnA
6 dffn3 FFnAF:AranF
7 6 biimpi FFnAF:AranF
8 imadmrn FdomF=ranF
9 fndm FFnAdomF=A
10 9 imaeq2d FFnAFdomF=FA
11 8 10 eqtr3id FFnAranF=FA
12 fnsnfv FFnAAAFA=FA
13 2 12 mpan2 FFnAFA=FA
14 11 13 eqtr4d FFnAranF=FA
15 14 feq3d FFnAF:AranFF:AFA
16 7 15 mpbid FFnAF:AFA
17 5 16 syl F:ABF:AFA
18 4 17 jca F:ABFABF:AFA
19 snssi FABFAB
20 fss F:AFAFABF:AB
21 20 ancoms FABF:AFAF:AB
22 19 21 sylan FABF:AFAF:AB
23 18 22 impbii F:ABFABF:AFA
24 fvex FAV
25 1 24 fsn F:AFAF=AFA
26 25 anbi2i FABF:AFAFABF=AFA
27 23 26 bitri F:ABFABF=AFA