Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fsn2.1 | |
|
Assertion | fsn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsn2.1 | |
|
2 | 1 | snid | |
3 | ffvelcdm | |
|
4 | 2 3 | mpan2 | |
5 | ffn | |
|
6 | dffn3 | |
|
7 | 6 | biimpi | |
8 | imadmrn | |
|
9 | fndm | |
|
10 | 9 | imaeq2d | |
11 | 8 10 | eqtr3id | |
12 | fnsnfv | |
|
13 | 2 12 | mpan2 | |
14 | 11 13 | eqtr4d | |
15 | 14 | feq3d | |
16 | 7 15 | mpbid | |
17 | 5 16 | syl | |
18 | 4 17 | jca | |
19 | snssi | |
|
20 | fss | |
|
21 | 20 | ancoms | |
22 | 19 21 | sylan | |
23 | 18 22 | impbii | |
24 | fvex | |
|
25 | 1 24 | fsn | |
26 | 25 | anbi2i | |
27 | 23 26 | bitri | |