Metamath Proof Explorer


Theorem fsneqrn

Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fsneqrn.a φ A V
fsneqrn.b B = A
fsneqrn.f φ F Fn B
fsneqrn.g φ G Fn B
Assertion fsneqrn φ F = G F A ran G

Proof

Step Hyp Ref Expression
1 fsneqrn.a φ A V
2 fsneqrn.b B = A
3 fsneqrn.f φ F Fn B
4 fsneqrn.g φ G Fn B
5 dffn3 F Fn B F : B ran F
6 3 5 sylib φ F : B ran F
7 snidg A V A A
8 1 7 syl φ A A
9 2 a1i φ B = A
10 9 eqcomd φ A = B
11 8 10 eleqtrd φ A B
12 6 11 ffvelrnd φ F A ran F
13 12 adantr φ F = G F A ran F
14 simpr φ F = G F = G
15 14 rneqd φ F = G ran F = ran G
16 13 15 eleqtrd φ F = G F A ran G
17 16 ex φ F = G F A ran G
18 simpr φ F A ran G F A ran G
19 dffn2 G Fn B G : B V
20 4 19 sylib φ G : B V
21 9 feq2d φ G : B V G : A V
22 20 21 mpbid φ G : A V
23 1 22 rnsnf φ ran G = G A
24 23 adantr φ F A ran G ran G = G A
25 18 24 eleqtrd φ F A ran G F A G A
26 elsni F A G A F A = G A
27 25 26 syl φ F A ran G F A = G A
28 1 adantr φ F A ran G A V
29 3 adantr φ F A ran G F Fn B
30 4 adantr φ F A ran G G Fn B
31 28 2 29 30 fsneq φ F A ran G F = G F A = G A
32 27 31 mpbird φ F A ran G F = G
33 32 ex φ F A ran G F = G
34 17 33 impbid φ F = G F A ran G