| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsneq.a |
|
| 2 |
|
fsneq.b |
|
| 3 |
|
fsneq.f |
|
| 4 |
|
fsneq.g |
|
| 5 |
|
eqfnfv |
|
| 6 |
3 4 5
|
syl2anc |
|
| 7 |
|
snidg |
|
| 8 |
1 7
|
syl |
|
| 9 |
2
|
eqcomi |
|
| 10 |
9
|
a1i |
|
| 11 |
8 10
|
eleqtrd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
|
fveq2 |
|
| 15 |
|
fveq2 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
16
|
rspcva |
|
| 18 |
12 13 17
|
syl2anc |
|
| 19 |
18
|
ex |
|
| 20 |
|
simpl |
|
| 21 |
2
|
eleq2i |
|
| 22 |
21
|
biimpi |
|
| 23 |
|
velsn |
|
| 24 |
22 23
|
sylib |
|
| 25 |
24
|
fveq2d |
|
| 26 |
25
|
adantl |
|
| 27 |
24
|
fveq2d |
|
| 28 |
27
|
adantl |
|
| 29 |
20 26 28
|
3eqtr4d |
|
| 30 |
29
|
adantll |
|
| 31 |
30
|
ralrimiva |
|
| 32 |
31
|
ex |
|
| 33 |
19 32
|
impbid |
|
| 34 |
6 33
|
bitrd |
|