Metamath Proof Explorer


Theorem fssxp

Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fssxp F:ABFA×B

Proof

Step Hyp Ref Expression
1 frel F:ABRelF
2 relssdmrn RelFFdomF×ranF
3 1 2 syl F:ABFdomF×ranF
4 fdm F:ABdomF=A
5 eqimss domF=AdomFA
6 4 5 syl F:ABdomFA
7 frn F:ABranFB
8 xpss12 domFAranFBdomF×ranFA×B
9 6 7 8 syl2anc F:ABdomF×ranFA×B
10 3 9 sstrd F:ABFA×B