Metamath Proof Explorer


Theorem fsumcllem

Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumcllem.1 φS
fsumcllem.2 φxSySx+yS
fsumcllem.3 φAFin
fsumcllem.4 φkABS
fsumcllem.5 φ0S
Assertion fsumcllem φkABS

Proof

Step Hyp Ref Expression
1 fsumcllem.1 φS
2 fsumcllem.2 φxSySx+yS
3 fsumcllem.3 φAFin
4 fsumcllem.4 φkABS
5 fsumcllem.5 φ0S
6 simpr φA=A=
7 6 sumeq1d φA=kAB=kB
8 sum0 kB=0
9 7 8 eqtrdi φA=kAB=0
10 5 adantr φA=0S
11 9 10 eqeltrd φA=kABS
12 1 adantr φAS
13 2 adantlr φAxSySx+yS
14 3 adantr φAAFin
15 4 adantlr φAkABS
16 simpr φAA
17 12 13 14 15 16 fsumcl2lem φAkABS
18 11 17 pm2.61dane φkABS