Metamath Proof Explorer


Theorem fsumcnsrcl

Description: Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses fsumcnsrcl.s φ S SubRing fld
fsumcnsrcl.a φ A Fin
fsumcnsrcl.b φ k A B S
Assertion fsumcnsrcl φ k A B S

Proof

Step Hyp Ref Expression
1 fsumcnsrcl.s φ S SubRing fld
2 fsumcnsrcl.a φ A Fin
3 fsumcnsrcl.b φ k A B S
4 cnfldbas = Base fld
5 4 subrgss S SubRing fld S
6 1 5 syl φ S
7 cnfldadd + = + fld
8 7 subrgacl S SubRing fld a S b S a + b S
9 8 3expb S SubRing fld a S b S a + b S
10 1 9 sylan φ a S b S a + b S
11 subrgsubg S SubRing fld S SubGrp fld
12 cnfld0 0 = 0 fld
13 12 subg0cl S SubGrp fld 0 S
14 1 11 13 3syl φ 0 S
15 6 10 2 3 14 fsumcllem φ k A B S