Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Algebraic integers I
fsumcnsrcl
Next ⟩
cnsrplycl
Metamath Proof Explorer
Ascii
Unicode
Theorem
fsumcnsrcl
Description:
Finite sums are closed in number rings.
(Contributed by
Stefan O'Rear
, 30-Nov-2014)
Ref
Expression
Hypotheses
fsumcnsrcl.s
⊢
φ
→
S
∈
SubRing
⁡
ℂ
fld
fsumcnsrcl.a
⊢
φ
→
A
∈
Fin
fsumcnsrcl.b
⊢
φ
∧
k
∈
A
→
B
∈
S
Assertion
fsumcnsrcl
⊢
φ
→
∑
k
∈
A
B
∈
S
Proof
Step
Hyp
Ref
Expression
1
fsumcnsrcl.s
⊢
φ
→
S
∈
SubRing
⁡
ℂ
fld
2
fsumcnsrcl.a
⊢
φ
→
A
∈
Fin
3
fsumcnsrcl.b
⊢
φ
∧
k
∈
A
→
B
∈
S
4
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
5
4
subrgss
⊢
S
∈
SubRing
⁡
ℂ
fld
→
S
⊆
ℂ
6
1
5
syl
⊢
φ
→
S
⊆
ℂ
7
cnfldadd
⊢
+
=
+
ℂ
fld
8
7
subrgacl
⊢
S
∈
SubRing
⁡
ℂ
fld
∧
a
∈
S
∧
b
∈
S
→
a
+
b
∈
S
9
8
3expb
⊢
S
∈
SubRing
⁡
ℂ
fld
∧
a
∈
S
∧
b
∈
S
→
a
+
b
∈
S
10
1
9
sylan
⊢
φ
∧
a
∈
S
∧
b
∈
S
→
a
+
b
∈
S
11
subrgsubg
⊢
S
∈
SubRing
⁡
ℂ
fld
→
S
∈
SubGrp
⁡
ℂ
fld
12
cnfld0
⊢
0
=
0
ℂ
fld
13
12
subg0cl
⊢
S
∈
SubGrp
⁡
ℂ
fld
→
0
∈
S
14
1
11
13
3syl
⊢
φ
→
0
∈
S
15
6
10
2
3
14
fsumcllem
⊢
φ
→
∑
k
∈
A
B
∈
S