Metamath Proof Explorer


Theorem fsumdvdsdiag

Description: A "diagonal commutation" of divisor sums analogous to fsum0diag . (Contributed by Mario Carneiro, 2-Jul-2015) (Revised by Mario Carneiro, 8-Apr-2016)

Ref Expression
Hypotheses fsumdvdsdiag.1 φN
fsumdvdsdiag.2 φjx|xNkx|xNjA
Assertion fsumdvdsdiag φjx|xNkx|xNjA=kx|xNjx|xNkA

Proof

Step Hyp Ref Expression
1 fsumdvdsdiag.1 φN
2 fsumdvdsdiag.2 φjx|xNkx|xNjA
3 fzfid φ1NFin
4 dvdsssfz1 Nx|xN1N
5 1 4 syl φx|xN1N
6 3 5 ssfid φx|xNFin
7 fzfid φjx|xN1NjFin
8 ssrab2 x|xN
9 dvdsdivcl Njx|xNNjx|xN
10 1 9 sylan φjx|xNNjx|xN
11 8 10 sselid φjx|xNNj
12 dvdsssfz1 Njx|xNj1Nj
13 11 12 syl φjx|xNx|xNj1Nj
14 7 13 ssfid φjx|xNx|xNjFin
15 1 fsumdvdsdiaglem φjx|xNkx|xNjkx|xNjx|xNk
16 1 fsumdvdsdiaglem φkx|xNjx|xNkjx|xNkx|xNj
17 15 16 impbid φjx|xNkx|xNjkx|xNjx|xNk
18 6 6 14 17 2 fsumcom2 φjx|xNkx|xNjA=kx|xNjx|xNkA