Metamath Proof Explorer


Theorem fsumim

Description: The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses fsumre.1 φAFin
fsumre.2 φkAB
Assertion fsumim φkAB=kAB

Proof

Step Hyp Ref Expression
1 fsumre.1 φAFin
2 fsumre.2 φkAB
3 imf :
4 ax-resscn
5 fss ::
6 3 4 5 mp2an :
7 imadd xyx+y=x+y
8 1 2 6 7 fsumrelem φkAB=kAB