| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumre.1 |
|
| 2 |
|
fsumre.2 |
|
| 3 |
|
fsumrelem.3 |
|
| 4 |
|
fsumrelem.4 |
|
| 5 |
|
0cn |
|
| 6 |
3
|
ffvelcdmi |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
7
|
addridi |
|
| 9 |
|
fvoveq1 |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
oveq1d |
|
| 12 |
9 11
|
eqeq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
|
00id |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
15
|
fveq2d |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
16 18
|
eqeq12d |
|
| 20 |
12 19 4
|
vtocl2ga |
|
| 21 |
5 5 20
|
mp2an |
|
| 22 |
8 21
|
eqtr2i |
|
| 23 |
7 7 5
|
addcani |
|
| 24 |
22 23
|
mpbi |
|
| 25 |
|
sumeq1 |
|
| 26 |
|
sum0 |
|
| 27 |
25 26
|
eqtrdi |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
sumeq1 |
|
| 30 |
|
sum0 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
24 28 31
|
3eqtr4a |
|
| 33 |
32
|
a1i |
|
| 34 |
|
addcl |
|
| 35 |
34
|
adantl |
|
| 36 |
2
|
fmpttd |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simprr |
|
| 39 |
|
f1of |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
fco |
|
| 42 |
37 40 41
|
syl2anc |
|
| 43 |
42
|
ffvelcdmda |
|
| 44 |
|
simprl |
|
| 45 |
|
nnuz |
|
| 46 |
44 45
|
eleqtrdi |
|
| 47 |
4
|
adantl |
|
| 48 |
40
|
ffvelcdmda |
|
| 49 |
|
simpr |
|
| 50 |
|
eqid |
|
| 51 |
50
|
fvmpt2 |
|
| 52 |
49 2 51
|
syl2anc |
|
| 53 |
52
|
fveq2d |
|
| 54 |
|
fvex |
|
| 55 |
|
eqid |
|
| 56 |
55
|
fvmpt2 |
|
| 57 |
49 54 56
|
sylancl |
|
| 58 |
53 57
|
eqtr4d |
|
| 59 |
58
|
ralrimiva |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
|
nfcv |
|
| 62 |
|
nffvmpt1 |
|
| 63 |
61 62
|
nffv |
|
| 64 |
|
nffvmpt1 |
|
| 65 |
63 64
|
nfeq |
|
| 66 |
|
2fveq3 |
|
| 67 |
|
fveq2 |
|
| 68 |
66 67
|
eqeq12d |
|
| 69 |
65 68
|
rspc |
|
| 70 |
48 60 69
|
sylc |
|
| 71 |
|
fvco3 |
|
| 72 |
40 71
|
sylan |
|
| 73 |
72
|
fveq2d |
|
| 74 |
|
fvco3 |
|
| 75 |
40 74
|
sylan |
|
| 76 |
70 73 75
|
3eqtr4d |
|
| 77 |
35 43 46 47 76
|
seqhomo |
|
| 78 |
|
fveq2 |
|
| 79 |
37
|
ffvelcdmda |
|
| 80 |
78 44 38 79 72
|
fsum |
|
| 81 |
80
|
fveq2d |
|
| 82 |
|
fveq2 |
|
| 83 |
3
|
ffvelcdmi |
|
| 84 |
2 83
|
syl |
|
| 85 |
84
|
fmpttd |
|
| 86 |
85
|
adantr |
|
| 87 |
86
|
ffvelcdmda |
|
| 88 |
82 44 38 87 75
|
fsum |
|
| 89 |
77 81 88
|
3eqtr4d |
|
| 90 |
|
sumfc |
|
| 91 |
90
|
fveq2i |
|
| 92 |
|
sumfc |
|
| 93 |
89 91 92
|
3eqtr3g |
|
| 94 |
93
|
expr |
|
| 95 |
94
|
exlimdv |
|
| 96 |
95
|
expimpd |
|
| 97 |
|
fz1f1o |
|
| 98 |
1 97
|
syl |
|
| 99 |
33 96 98
|
mpjaod |
|