Metamath Proof Explorer


Theorem fsummsndifre

Description: A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018)

Ref Expression
Assertion fsummsndifre AFinkABkAXB

Proof

Step Hyp Ref Expression
1 nfcv _xB
2 nfcsb1v _kx/kB
3 csbeq1a k=xB=x/kB
4 1 2 3 cbvsumi kAXB=xAXx/kB
5 diffi AFinAXFin
6 5 adantr AFinkABAXFin
7 eldifi xAXxA
8 rspcsbela xAkABx/kB
9 7 8 sylan xAXkABx/kB
10 9 zred xAXkABx/kB
11 10 expcom kABxAXx/kB
12 11 adantl AFinkABxAXx/kB
13 12 imp AFinkABxAXx/kB
14 6 13 fsumrecl AFinkABxAXx/kB
15 4 14 eqeltrid AFinkABkAXB