Metamath Proof Explorer


Theorem fsummsndifre

Description: A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018)

Ref Expression
Assertion fsummsndifre A Fin k A B k A X B

Proof

Step Hyp Ref Expression
1 nfcv _ x B
2 nfcsb1v _ k x / k B
3 csbeq1a k = x B = x / k B
4 1 2 3 cbvsumi k A X B = x A X x / k B
5 diffi A Fin A X Fin
6 5 adantr A Fin k A B A X Fin
7 eldifi x A X x A
8 rspcsbela x A k A B x / k B
9 7 8 sylan x A X k A B x / k B
10 9 zred x A X k A B x / k B
11 10 expcom k A B x A X x / k B
12 11 adantl A Fin k A B x A X x / k B
13 12 imp A Fin k A B x A X x / k B
14 6 13 fsumrecl A Fin k A B x A X x / k B
15 4 14 eqeltrid A Fin k A B k A X B