| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neldifsnd |
|
| 2 |
|
disjsn |
|
| 3 |
1 2
|
sylibr |
|
| 4 |
|
uncom |
|
| 5 |
|
simp2 |
|
| 6 |
5
|
snssd |
|
| 7 |
|
undif |
|
| 8 |
6 7
|
sylib |
|
| 9 |
4 8
|
eqtr2id |
|
| 10 |
|
simp1 |
|
| 11 |
|
rspcsbela |
|
| 12 |
11
|
zcnd |
|
| 13 |
12
|
expcom |
|
| 14 |
13
|
3ad2ant3 |
|
| 15 |
14
|
imp |
|
| 16 |
3 9 10 15
|
fsumsplit |
|
| 17 |
|
csbeq1a |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfcsb1v |
|
| 20 |
17 18 19
|
cbvsum |
|
| 21 |
17 18 19
|
cbvsum |
|
| 22 |
17 18 19
|
cbvsum |
|
| 23 |
21 22
|
oveq12i |
|
| 24 |
16 20 23
|
3eqtr4g |
|
| 25 |
|
rspcsbela |
|
| 26 |
25
|
zcnd |
|
| 27 |
26
|
3adant1 |
|
| 28 |
|
sumsns |
|
| 29 |
5 27 28
|
syl2anc |
|
| 30 |
29
|
oveq2d |
|
| 31 |
24 30
|
eqtrd |
|