| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neldifsnd |  | 
						
							| 2 |  | disjsn |  | 
						
							| 3 | 1 2 | sylibr |  | 
						
							| 4 |  | uncom |  | 
						
							| 5 |  | simp2 |  | 
						
							| 6 | 5 | snssd |  | 
						
							| 7 |  | undif |  | 
						
							| 8 | 6 7 | sylib |  | 
						
							| 9 | 4 8 | eqtr2id |  | 
						
							| 10 |  | simp1 |  | 
						
							| 11 |  | rspcsbela |  | 
						
							| 12 | 11 | zcnd |  | 
						
							| 13 | 12 | expcom |  | 
						
							| 14 | 13 | 3ad2ant3 |  | 
						
							| 15 | 14 | imp |  | 
						
							| 16 | 3 9 10 15 | fsumsplit |  | 
						
							| 17 |  | csbeq1a |  | 
						
							| 18 |  | nfcv |  | 
						
							| 19 |  | nfcsb1v |  | 
						
							| 20 | 17 18 19 | cbvsum |  | 
						
							| 21 | 17 18 19 | cbvsum |  | 
						
							| 22 | 17 18 19 | cbvsum |  | 
						
							| 23 | 21 22 | oveq12i |  | 
						
							| 24 | 16 20 23 | 3eqtr4g |  | 
						
							| 25 |  | rspcsbela |  | 
						
							| 26 | 25 | zcnd |  | 
						
							| 27 | 26 | 3adant1 |  | 
						
							| 28 |  | sumsns |  | 
						
							| 29 | 5 27 28 | syl2anc |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 | 24 30 | eqtrd |  |