Metamath Proof Explorer


Theorem fsuppmptdmf

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019)

Ref Expression
Hypotheses fsuppmptdmf.n xφ
fsuppmptdmf.f F=xAY
fsuppmptdmf.a φAFin
fsuppmptdmf.y φxAYV
fsuppmptdmf.z φZW
Assertion fsuppmptdmf φfinSuppZF

Proof

Step Hyp Ref Expression
1 fsuppmptdmf.n xφ
2 fsuppmptdmf.f F=xAY
3 fsuppmptdmf.a φAFin
4 fsuppmptdmf.y φxAYV
5 fsuppmptdmf.z φZW
6 1 4 2 fmptdf φF:AV
7 6 3 5 fdmfifsupp φfinSuppZF