Metamath Proof Explorer
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fsuppmptdmf.n |
|
|
|
fsuppmptdmf.f |
|
|
|
fsuppmptdmf.a |
|
|
|
fsuppmptdmf.y |
|
|
|
fsuppmptdmf.z |
|
|
Assertion |
fsuppmptdmf |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppmptdmf.n |
|
2 |
|
fsuppmptdmf.f |
|
3 |
|
fsuppmptdmf.a |
|
4 |
|
fsuppmptdmf.y |
|
5 |
|
fsuppmptdmf.z |
|
6 |
1 4 2
|
fmptdf |
|
7 |
6 3 5
|
fdmfifsupp |
|