Metamath Proof Explorer


Theorem fuco23alem

Description: The naturality property ( nati ) in category E . (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco23a.a φ A F G C Nat D M N
fuco23a.b φ B K L D Nat E R S
fuco23a.x φ X Base C
fuco23alem.o · ˙ = comp E
Assertion fuco23alem φ B M X K F X K M X · ˙ R M X F X L M X A X = F X S M X A X K F X R F X · ˙ R M X B F X

Proof

Step Hyp Ref Expression
1 fuco23a.a φ A F G C Nat D M N
2 fuco23a.b φ B K L D Nat E R S
3 fuco23a.x φ X Base C
4 fuco23alem.o · ˙ = comp E
5 eqid D Nat E = D Nat E
6 eqid Base D = Base D
7 eqid Hom D = Hom D
8 eqid Base C = Base C
9 eqid C Nat D = C Nat D
10 9 1 natrcl2 φ F C Func D G
11 8 6 10 funcf1 φ F : Base C Base D
12 11 3 ffvelcdmd φ F X Base D
13 9 1 natrcl3 φ M C Func D N
14 8 6 13 funcf1 φ M : Base C Base D
15 14 3 ffvelcdmd φ M X Base D
16 9 1 8 7 3 natcl φ A X F X Hom D M X
17 5 2 6 7 4 12 15 16 nati φ B M X K F X K M X · ˙ R M X F X L M X A X = F X S M X A X K F X R F X · ˙ R M X B F X