Metamath Proof Explorer


Theorem fucocolem1

Description: Lemma for fucoco . Associativity for morphisms in category E . To simply put, ( ( a .x. b ) .x. ( c .x. d ) ) = ( a .x. ( ( b .x. c ) .x. d ) ) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucocolem1.x φ X Base C
fucocolem1.p φ P D Func E
fucocolem1.q φ Q C Func D
fucocolem1.a φ A 1 st P 1 st Q X Hom E 1 st K 1 st N X
fucocolem1.b φ B 1 st F 1 st L X Hom E 1 st P 1 st Q X
Assertion fucocolem1 φ U 1 st N X 1 st P 1 st Q X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st M 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucocolem1.x φ X Base C
6 fucocolem1.p φ P D Func E
7 fucocolem1.q φ Q C Func D
8 fucocolem1.a φ A 1 st P 1 st Q X Hom E 1 st K 1 st N X
9 fucocolem1.b φ B 1 st F 1 st L X Hom E 1 st P 1 st Q X
10 eqid Base E = Base E
11 eqid Hom E = Hom E
12 eqid comp E = comp E
13 relfunc Rel D Func E
14 eqid D Nat E = D Nat E
15 14 natrcl R F D Nat E K F D Func E K D Func E
16 1 15 syl φ F D Func E K D Func E
17 16 simpld φ F D Func E
18 1st2ndbr Rel D Func E F D Func E 1 st F D Func E 2 nd F
19 13 17 18 sylancr φ 1 st F D Func E 2 nd F
20 19 funcrcl3 φ E Cat
21 eqid Base D = Base D
22 21 10 19 funcf1 φ 1 st F : Base D Base E
23 eqid Base C = Base C
24 relfunc Rel C Func D
25 eqid C Nat D = C Nat D
26 25 natrcl S G C Nat D L G C Func D L C Func D
27 2 26 syl φ G C Func D L C Func D
28 27 simpld φ G C Func D
29 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
30 24 28 29 sylancr φ 1 st G C Func D 2 nd G
31 23 21 30 funcf1 φ 1 st G : Base C Base D
32 31 5 ffvelcdmd φ 1 st G X Base D
33 22 32 ffvelcdmd φ 1 st F 1 st G X Base E
34 1st2ndbr Rel D Func E P D Func E 1 st P D Func E 2 nd P
35 13 6 34 sylancr φ 1 st P D Func E 2 nd P
36 21 10 35 funcf1 φ 1 st P : Base D Base E
37 1st2ndbr Rel C Func D Q C Func D 1 st Q C Func D 2 nd Q
38 24 7 37 sylancr φ 1 st Q C Func D 2 nd Q
39 23 21 38 funcf1 φ 1 st Q : Base C Base D
40 39 5 ffvelcdmd φ 1 st Q X Base D
41 36 40 ffvelcdmd φ 1 st P 1 st Q X Base E
42 16 simprd φ K D Func E
43 1st2ndbr Rel D Func E K D Func E 1 st K D Func E 2 nd K
44 13 42 43 sylancr φ 1 st K D Func E 2 nd K
45 21 10 44 funcf1 φ 1 st K : Base D Base E
46 25 natrcl V L C Nat D N L C Func D N C Func D
47 4 46 syl φ L C Func D N C Func D
48 47 simprd φ N C Func D
49 1st2ndbr Rel C Func D N C Func D 1 st N C Func D 2 nd N
50 24 48 49 sylancr φ 1 st N C Func D 2 nd N
51 23 21 50 funcf1 φ 1 st N : Base C Base D
52 51 5 ffvelcdmd φ 1 st N X Base D
53 45 52 ffvelcdmd φ 1 st K 1 st N X Base E
54 27 simprd φ L C Func D
55 1st2ndbr Rel C Func D L C Func D 1 st L C Func D 2 nd L
56 24 54 55 sylancr φ 1 st L C Func D 2 nd L
57 23 21 56 funcf1 φ 1 st L : Base C Base D
58 57 5 ffvelcdmd φ 1 st L X Base D
59 22 58 ffvelcdmd φ 1 st F 1 st L X Base E
60 eqid Hom D = Hom D
61 21 60 11 19 32 58 funcf2 φ 1 st G X 2 nd F 1 st L X : 1 st G X Hom D 1 st L X 1 st F 1 st G X Hom E 1 st F 1 st L X
62 25 2 nat1st2nd φ S 1 st G 2 nd G C Nat D 1 st L 2 nd L
63 25 62 23 60 5 natcl φ S X 1 st G X Hom D 1 st L X
64 61 63 ffvelcdmd φ 1 st G X 2 nd F 1 st L X S X 1 st F 1 st G X Hom E 1 st F 1 st L X
65 10 11 12 20 33 59 41 64 9 catcocl φ B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X 1 st F 1 st G X Hom E 1 st P 1 st Q X
66 14 natrcl U K D Nat E M K D Func E M D Func E
67 3 66 syl φ K D Func E M D Func E
68 67 simprd φ M D Func E
69 1st2ndbr Rel D Func E M D Func E 1 st M D Func E 2 nd M
70 13 68 69 sylancr φ 1 st M D Func E 2 nd M
71 21 10 70 funcf1 φ 1 st M : Base D Base E
72 71 52 ffvelcdmd φ 1 st M 1 st N X Base E
73 14 3 nat1st2nd φ U 1 st K 2 nd K D Nat E 1 st M 2 nd M
74 14 73 21 11 52 natcl φ U 1 st N X 1 st K 1 st N X Hom E 1 st M 1 st N X
75 10 11 12 20 33 41 53 65 8 72 74 catass φ U 1 st N X 1 st P 1 st Q X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st M 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X
76 10 11 12 20 33 59 41 64 9 53 8 catass φ A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X = A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X
77 76 oveq2d φ U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X
78 75 77 eqtr4d φ U 1 st N X 1 st P 1 st Q X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st M 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X