Metamath Proof Explorer


Theorem fucocolem1

Description: Lemma for fucoco . Associativity for morphisms in category E . To simply put, ( ( a .x. b ) .x. ( c .x. d ) ) = ( a .x. ( ( b .x. c ) .x. d ) ) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucocolem1.x φ X Base C
fucocolem1.p φ P D Func E
fucocolem1.q φ Q C Func D
fucocolem1.a φ A 1 st P 1 st Q X Hom E 1 st K 1 st N X
fucocolem1.b φ B 1 st F 1 st L X Hom E 1 st P 1 st Q X
Assertion fucocolem1 φ U 1 st N X 1 st P 1 st Q X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st M 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucocolem1.x φ X Base C
6 fucocolem1.p φ P D Func E
7 fucocolem1.q φ Q C Func D
8 fucocolem1.a φ A 1 st P 1 st Q X Hom E 1 st K 1 st N X
9 fucocolem1.b φ B 1 st F 1 st L X Hom E 1 st P 1 st Q X
10 eqid Base E = Base E
11 eqid Hom E = Hom E
12 eqid comp E = comp E
13 eqid D Nat E = D Nat E
14 13 natrcl R F D Nat E K F D Func E K D Func E
15 1 14 syl φ F D Func E K D Func E
16 15 simpld φ F D Func E
17 16 func1st2nd φ 1 st F D Func E 2 nd F
18 17 funcrcl3 φ E Cat
19 eqid Base D = Base D
20 19 10 17 funcf1 φ 1 st F : Base D Base E
21 eqid Base C = Base C
22 eqid C Nat D = C Nat D
23 22 natrcl S G C Nat D L G C Func D L C Func D
24 2 23 syl φ G C Func D L C Func D
25 24 simpld φ G C Func D
26 25 func1st2nd φ 1 st G C Func D 2 nd G
27 21 19 26 funcf1 φ 1 st G : Base C Base D
28 27 5 ffvelcdmd φ 1 st G X Base D
29 20 28 ffvelcdmd φ 1 st F 1 st G X Base E
30 6 func1st2nd φ 1 st P D Func E 2 nd P
31 19 10 30 funcf1 φ 1 st P : Base D Base E
32 7 func1st2nd φ 1 st Q C Func D 2 nd Q
33 21 19 32 funcf1 φ 1 st Q : Base C Base D
34 33 5 ffvelcdmd φ 1 st Q X Base D
35 31 34 ffvelcdmd φ 1 st P 1 st Q X Base E
36 15 simprd φ K D Func E
37 36 func1st2nd φ 1 st K D Func E 2 nd K
38 19 10 37 funcf1 φ 1 st K : Base D Base E
39 22 natrcl V L C Nat D N L C Func D N C Func D
40 4 39 syl φ L C Func D N C Func D
41 40 simprd φ N C Func D
42 41 func1st2nd φ 1 st N C Func D 2 nd N
43 21 19 42 funcf1 φ 1 st N : Base C Base D
44 43 5 ffvelcdmd φ 1 st N X Base D
45 38 44 ffvelcdmd φ 1 st K 1 st N X Base E
46 24 simprd φ L C Func D
47 46 func1st2nd φ 1 st L C Func D 2 nd L
48 21 19 47 funcf1 φ 1 st L : Base C Base D
49 48 5 ffvelcdmd φ 1 st L X Base D
50 20 49 ffvelcdmd φ 1 st F 1 st L X Base E
51 eqid Hom D = Hom D
52 19 51 11 17 28 49 funcf2 φ 1 st G X 2 nd F 1 st L X : 1 st G X Hom D 1 st L X 1 st F 1 st G X Hom E 1 st F 1 st L X
53 22 2 nat1st2nd φ S 1 st G 2 nd G C Nat D 1 st L 2 nd L
54 22 53 21 51 5 natcl φ S X 1 st G X Hom D 1 st L X
55 52 54 ffvelcdmd φ 1 st G X 2 nd F 1 st L X S X 1 st F 1 st G X Hom E 1 st F 1 st L X
56 10 11 12 18 29 50 35 55 9 catcocl φ B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X 1 st F 1 st G X Hom E 1 st P 1 st Q X
57 13 natrcl U K D Nat E M K D Func E M D Func E
58 3 57 syl φ K D Func E M D Func E
59 58 simprd φ M D Func E
60 59 func1st2nd φ 1 st M D Func E 2 nd M
61 19 10 60 funcf1 φ 1 st M : Base D Base E
62 61 44 ffvelcdmd φ 1 st M 1 st N X Base E
63 13 3 nat1st2nd φ U 1 st K 2 nd K D Nat E 1 st M 2 nd M
64 13 63 19 11 44 natcl φ U 1 st N X 1 st K 1 st N X Hom E 1 st M 1 st N X
65 10 11 12 18 29 35 45 56 8 62 64 catass φ U 1 st N X 1 st P 1 st Q X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st M 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X
66 10 11 12 18 29 50 35 55 9 45 8 catass φ A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X = A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X
67 66 oveq2d φ U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X
68 65 67 eqtr4d φ U 1 st N X 1 st P 1 st Q X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st G X 1 st P 1 st Q X comp E 1 st M 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st P 1 st Q X 1 st G X 2 nd F 1 st L X S X = U 1 st N X 1 st F 1 st G X 1 st K 1 st N X comp E 1 st M 1 st N X A 1 st F 1 st L X 1 st P 1 st Q X comp E 1 st K 1 st N X B 1 st F 1 st G X 1 st F 1 st L X comp E 1 st K 1 st N X 1 st G X 2 nd F 1 st L X S X