Metamath Proof Explorer


Theorem fucorid2

Description: Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
fucolid.i I = Id Q
fucorid.q Q = C FuncCat D
fucorid.a φ A G D Nat E H
fucorid.f φ F C Func D
Assertion fucorid2 φ A G F P H F I F = A 1 st F

Proof

Step Hyp Ref Expression
1 fucolid.p Could not format ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
2 fucolid.i I = Id Q
3 fucorid.q Q = C FuncCat D
4 fucorid.a φ A G D Nat E H
5 fucorid.f φ F C Func D
6 1 2 3 4 5 fucorid φ A G F P H F I F = x Base C A 1 st F x
7 eqid D Nat E = D Nat E
8 7 4 nat1st2nd φ A 1 st G 2 nd G D Nat E 1 st H 2 nd H
9 eqid Base D = Base D
10 7 8 9 natfn φ A Fn Base D
11 dffn2 A Fn Base D A : Base D V
12 10 11 sylib φ A : Base D V
13 eqid Base C = Base C
14 relfunc Rel C Func D
15 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
16 14 5 15 sylancr φ 1 st F C Func D 2 nd F
17 13 9 16 funcf1 φ 1 st F : Base C Base D
18 fcompt A : Base D V 1 st F : Base C Base D A 1 st F = x Base C A 1 st F x
19 12 17 18 syl2anc φ A 1 st F = x Base C A 1 st F x
20 6 19 eqtr4d φ A G F P H F I F = A 1 st F