Metamath Proof Explorer


Theorem fucorid

Description: Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor, in maps-to notation. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
fucolid.i I = Id Q
fucorid.q Q = C FuncCat D
fucorid.a φ A G D Nat E H
fucorid.f φ F C Func D
Assertion fucorid φ A G F P H F I F = x Base C A 1 st F x

Proof

Step Hyp Ref Expression
1 fucolid.p Could not format ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
2 fucolid.i I = Id Q
3 fucorid.q Q = C FuncCat D
4 fucorid.a φ A G D Nat E H
5 fucorid.f φ F C Func D
6 eqid Id D = Id D
7 3 2 6 5 fucid φ I F = Id D 1 st F
8 7 oveq2d φ A G F P H F I F = A G F P H F Id D 1 st F
9 eqid C Nat D = C Nat D
10 3 9 6 5 fucidcl φ Id D 1 st F F C Nat D F
11 9 10 nat1st2nd φ Id D 1 st F 1 st F 2 nd F C Nat D 1 st F 2 nd F
12 9 11 natrcl2 φ 1 st F C Func D 2 nd F
13 12 funcrcl2 φ C Cat
14 eqid D Nat E = D Nat E
15 14 4 nat1st2nd φ A 1 st G 2 nd G D Nat E 1 st H 2 nd H
16 14 15 natrcl2 φ 1 st G D Func E 2 nd G
17 16 funcrcl2 φ D Cat
18 16 funcrcl3 φ E Cat
19 eqidd Could not format ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) with typecode |-
20 13 17 18 19 fucoelvv Could not format ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) with typecode |-
21 1st2nd2 Could not format ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
22 20 21 syl Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
23 1 opeq2d Could not format ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
24 22 23 eqtrd Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
25 eqidd φ G F = G F
26 eqidd φ H F = H F
27 24 25 26 10 4 fuco22a φ A G F P H F Id D 1 st F = x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x
28 eqid Base C = Base C
29 eqid Base D = Base D
30 12 adantr φ x Base C 1 st F C Func D 2 nd F
31 28 29 30 funcf1 φ x Base C 1 st F : Base C Base D
32 simpr φ x Base C x Base C
33 31 32 fvco3d φ x Base C Id D 1 st F x = Id D 1 st F x
34 33 fveq2d φ x Base C 1 st F x 2 nd G 1 st F x Id D 1 st F x = 1 st F x 2 nd G 1 st F x Id D 1 st F x
35 eqid Id E = Id E
36 16 adantr φ x Base C 1 st G D Func E 2 nd G
37 31 32 ffvelcdmd φ x Base C 1 st F x Base D
38 29 6 35 36 37 funcid φ x Base C 1 st F x 2 nd G 1 st F x Id D 1 st F x = Id E 1 st G 1 st F x
39 34 38 eqtrd φ x Base C 1 st F x 2 nd G 1 st F x Id D 1 st F x = Id E 1 st G 1 st F x
40 39 oveq2d φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x = A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x Id E 1 st G 1 st F x
41 eqid Base E = Base E
42 eqid Hom E = Hom E
43 18 adantr φ x Base C E Cat
44 29 41 36 funcf1 φ x Base C 1 st G : Base D Base E
45 44 37 ffvelcdmd φ x Base C 1 st G 1 st F x Base E
46 eqid comp E = comp E
47 14 15 natrcl3 φ 1 st H D Func E 2 nd H
48 47 adantr φ x Base C 1 st H D Func E 2 nd H
49 29 41 48 funcf1 φ x Base C 1 st H : Base D Base E
50 49 37 ffvelcdmd φ x Base C 1 st H 1 st F x Base E
51 15 adantr φ x Base C A 1 st G 2 nd G D Nat E 1 st H 2 nd H
52 14 51 29 42 37 natcl φ x Base C A 1 st F x 1 st G 1 st F x Hom E 1 st H 1 st F x
53 41 42 35 43 45 46 50 52 catrid φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x Id E 1 st G 1 st F x = A 1 st F x
54 40 53 eqtrd φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x = A 1 st F x
55 54 mpteq2dva φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x = x Base C A 1 st F x
56 8 27 55 3eqtrd φ A G F P H F I F = x Base C A 1 st F x