Metamath Proof Explorer


Theorem fullres2c

Description: Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses ffthres2c.a A=BaseC
ffthres2c.e E=D𝑠S
ffthres2c.d φDCat
ffthres2c.r φSV
ffthres2c.1 φF:AS
Assertion fullres2c φFCFullDGFCFullEG

Proof

Step Hyp Ref Expression
1 ffthres2c.a A=BaseC
2 ffthres2c.e E=D𝑠S
3 ffthres2c.d φDCat
4 ffthres2c.r φSV
5 ffthres2c.1 φF:AS
6 1 2 3 4 5 funcres2c φFCFuncDGFCFuncEG
7 eqid HomD=HomD
8 2 7 resshom SVHomD=HomE
9 4 8 syl φHomD=HomE
10 9 oveqd φFxHomDFy=FxHomEFy
11 10 eqeq2d φranxGy=FxHomDFyranxGy=FxHomEFy
12 11 2ralbidv φxAyAranxGy=FxHomDFyxAyAranxGy=FxHomEFy
13 6 12 anbi12d φFCFuncDGxAyAranxGy=FxHomDFyFCFuncEGxAyAranxGy=FxHomEFy
14 1 7 isfull FCFullDGFCFuncDGxAyAranxGy=FxHomDFy
15 eqid HomE=HomE
16 1 15 isfull FCFullEGFCFuncEGxAyAranxGy=FxHomEFy
17 13 14 16 3bitr4g φFCFullDGFCFullEG