Metamath Proof Explorer


Theorem funcid

Description: A functor maps each identity to the corresponding identity in the target category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses funcid.b B = Base D
funcid.1 1 ˙ = Id D
funcid.i I = Id E
funcid.f φ F D Func E G
funcid.x φ X B
Assertion funcid φ X G X 1 ˙ X = I F X

Proof

Step Hyp Ref Expression
1 funcid.b B = Base D
2 funcid.1 1 ˙ = Id D
3 funcid.i I = Id E
4 funcid.f φ F D Func E G
5 funcid.x φ X B
6 id x = X x = X
7 6 6 oveq12d x = X x G x = X G X
8 fveq2 x = X 1 ˙ x = 1 ˙ X
9 7 8 fveq12d x = X x G x 1 ˙ x = X G X 1 ˙ X
10 2fveq3 x = X I F x = I F X
11 9 10 eqeq12d x = X x G x 1 ˙ x = I F x X G X 1 ˙ X = I F X
12 eqid Base E = Base E
13 eqid Hom D = Hom D
14 eqid Hom E = Hom E
15 eqid comp D = comp D
16 eqid comp E = comp E
17 df-br F D Func E G F G D Func E
18 4 17 sylib φ F G D Func E
19 funcrcl F G D Func E D Cat E Cat
20 18 19 syl φ D Cat E Cat
21 20 simpld φ D Cat
22 20 simprd φ E Cat
23 1 12 13 14 2 3 15 16 21 22 isfunc φ F D Func E G F : B Base E G z B × B F 1 st z Hom E F 2 nd z Hom D z x B x G x 1 ˙ x = I F x y B z B m x Hom D y n y Hom D z x G z n x y comp D z m = y G z n F x F y comp E F z x G y m
24 4 23 mpbid φ F : B Base E G z B × B F 1 st z Hom E F 2 nd z Hom D z x B x G x 1 ˙ x = I F x y B z B m x Hom D y n y Hom D z x G z n x y comp D z m = y G z n F x F y comp E F z x G y m
25 24 simp3d φ x B x G x 1 ˙ x = I F x y B z B m x Hom D y n y Hom D z x G z n x y comp D z m = y G z n F x F y comp E F z x G y m
26 simpl x G x 1 ˙ x = I F x y B z B m x Hom D y n y Hom D z x G z n x y comp D z m = y G z n F x F y comp E F z x G y m x G x 1 ˙ x = I F x
27 26 ralimi x B x G x 1 ˙ x = I F x y B z B m x Hom D y n y Hom D z x G z n x y comp D z m = y G z n F x F y comp E F z x G y m x B x G x 1 ˙ x = I F x
28 25 27 syl φ x B x G x 1 ˙ x = I F x
29 11 28 5 rspcdva φ X G X 1 ˙ X = I F X