Metamath Proof Explorer


Theorem funcringcsetcALTV

Description: The "natural forgetful functor" from the category of rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
funcringcsetcALTV.g φG=xB,yBIxRingHomy
Assertion funcringcsetcALTV φFRFuncSG

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 funcringcsetcALTV.g φG=xB,yBIxRingHomy
8 eqid HomR=HomR
9 eqid HomS=HomS
10 eqid IdR=IdR
11 eqid IdS=IdS
12 eqid compR=compR
13 eqid compS=compS
14 1 ringccatALTV UWUniRCat
15 5 14 syl φRCat
16 2 setccat UWUniSCat
17 5 16 syl φSCat
18 1 2 3 4 5 6 funcringcsetclem3ALTV φF:BC
19 1 2 3 4 5 6 7 funcringcsetclem4ALTV φGFnB×B
20 1 2 3 4 5 6 7 funcringcsetclem8ALTV φaBbBaGb:aHomRbFaHomSFb
21 1 2 3 4 5 6 7 funcringcsetclem7ALTV φaBaGaIdRa=IdSFa
22 1 2 3 4 5 6 7 funcringcsetclem9ALTV φaBbBcBhaHomRbkbHomRcaGckabcompRch=bGckFaFbcompSFcaGbh
23 3 4 8 9 10 11 12 13 15 17 18 19 20 21 22 isfuncd φFRFuncSG