Metamath Proof Explorer


Theorem funcringcsetcALTV2lem3

Description: Lemma 3 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R = RingCat U
funcringcsetcALTV2.s S = SetCat U
funcringcsetcALTV2.b B = Base R
funcringcsetcALTV2.c C = Base S
funcringcsetcALTV2.u φ U WUni
funcringcsetcALTV2.f φ F = x B Base x
Assertion funcringcsetcALTV2lem3 φ F : B C

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R = RingCat U
2 funcringcsetcALTV2.s S = SetCat U
3 funcringcsetcALTV2.b B = Base R
4 funcringcsetcALTV2.c C = Base S
5 funcringcsetcALTV2.u φ U WUni
6 funcringcsetcALTV2.f φ F = x B Base x
7 1 3 5 ringcbasbas φ x B Base x U
8 2 5 setcbas φ U = Base S
9 8 eqcomd φ Base S = U
10 9 adantr φ x B Base S = U
11 7 10 eleqtrrd φ x B Base x Base S
12 11 4 eleqtrrdi φ x B Base x C
13 12 fmpttd φ x B Base x : B C
14 6 feq1d φ F : B C x B Base x : B C
15 13 14 mpbird φ F : B C