Metamath Proof Explorer


Theorem funcringcsetclem1ALTV

Description: Lemma 1 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
Assertion funcringcsetclem1ALTV φXBFX=BaseX

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 6 adantr φXBF=xBBasex
8 fveq2 x=XBasex=BaseX
9 8 adantl φXBx=XBasex=BaseX
10 simpr φXBXB
11 fvexd φXBBaseXV
12 7 9 10 11 fvmptd φXBFX=BaseX