Metamath Proof Explorer
Description: Lemma 1 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
funcringcsetcALTV.r |
|
|
|
funcringcsetcALTV.s |
|
|
|
funcringcsetcALTV.b |
|
|
|
funcringcsetcALTV.c |
|
|
|
funcringcsetcALTV.u |
|
|
|
funcringcsetcALTV.f |
|
|
Assertion |
funcringcsetclem1ALTV |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV.r |
|
2 |
|
funcringcsetcALTV.s |
|
3 |
|
funcringcsetcALTV.b |
|
4 |
|
funcringcsetcALTV.c |
|
5 |
|
funcringcsetcALTV.u |
|
6 |
|
funcringcsetcALTV.f |
|
7 |
6
|
adantr |
|
8 |
|
fveq2 |
|
9 |
8
|
adantl |
|
10 |
|
simpr |
|
11 |
|
fvexd |
|
12 |
7 9 10 11
|
fvmptd |
|