Metamath Proof Explorer


Theorem funcringcsetclem3ALTV

Description: Lemma 3 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
Assertion funcringcsetclem3ALTV φF:BC

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 1 3 5 ringcbasbasALTV φxBBasexU
8 2 5 setcbas φU=BaseS
9 8 eqcomd φBaseS=U
10 9 adantr φxBBaseS=U
11 7 10 eleqtrrd φxBBasexBaseS
12 11 4 eleqtrrdi φxBBasexC
13 12 fmpttd φxBBasex:BC
14 6 feq1d φF:BCxBBasex:BC
15 13 14 mpbird φF:BC