Metamath Proof Explorer


Theorem funcsetcestrclem6

Description: Lemma 6 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses funcsetcestrc.s S=SetCatU
funcsetcestrc.c C=BaseS
funcsetcestrc.f φF=xCBasendxx
funcsetcestrc.u φUWUni
funcsetcestrc.o φωU
funcsetcestrc.g φG=xC,yCIyx
Assertion funcsetcestrclem6 φXCYCHYXXGYH=H

Proof

Step Hyp Ref Expression
1 funcsetcestrc.s S=SetCatU
2 funcsetcestrc.c C=BaseS
3 funcsetcestrc.f φF=xCBasendxx
4 funcsetcestrc.u φUWUni
5 funcsetcestrc.o φωU
6 funcsetcestrc.g φG=xC,yCIyx
7 1 2 3 4 5 6 funcsetcestrclem5 φXCYCXGY=IYX
8 7 3adant3 φXCYCHYXXGY=IYX
9 8 fveq1d φXCYCHYXXGYH=IYXH
10 fvresi HYXIYXH=H
11 10 3ad2ant3 φXCYCHYXIYXH=H
12 9 11 eqtrd φXCYCHYXXGYH=H