Metamath Proof Explorer


Theorem funimaeq

Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses funimaeq.x xφ
funimaeq.f φFunF
funimaeq.g φFunG
funimaeq.a φAdomF
funimaeq.d φAdomG
funimaeq.e φxAFx=Gx
Assertion funimaeq φFA=GA

Proof

Step Hyp Ref Expression
1 funimaeq.x xφ
2 funimaeq.f φFunF
3 funimaeq.g φFunG
4 funimaeq.a φAdomF
5 funimaeq.d φAdomG
6 funimaeq.e φxAFx=Gx
7 3 funfnd φGFndomG
8 7 adantr φxAGFndomG
9 5 adantr φxAAdomG
10 simpr φxAxA
11 fnfvima GFndomGAdomGxAGxGA
12 8 9 10 11 syl3anc φxAGxGA
13 6 12 eqeltrd φxAFxGA
14 1 2 13 funimassd φFAGA
15 2 funfnd φFFndomF
16 15 adantr φxAFFndomF
17 4 adantr φxAAdomF
18 fnfvima FFndomFAdomFxAFxFA
19 16 17 10 18 syl3anc φxAFxFA
20 6 19 eqeltrrd φxAGxFA
21 1 3 20 funimassd φGAFA
22 14 21 eqssd φFA=GA