Metamath Proof Explorer


Theorem funimaexgOLD

Description: Obsolete version of funimaexg as of 19-Dec-2024. (Contributed by NM, 10-Sep-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion funimaexgOLD FunABCABV

Proof

Step Hyp Ref Expression
1 imaeq2 w=BAw=AB
2 1 eleq1d w=BAwVABV
3 2 imbi2d w=BFunAAwVFunAABV
4 dffun5 FunARelAxzyxyAy=z
5 nfv zxyA
6 5 axrep4 xzyxyAy=zzyyzxxwxyA
7 isset AwVzz=Aw
8 dfima3 Aw=y|xxwxyA
9 8 eqeq2i z=Awz=y|xxwxyA
10 eqabb z=y|xxwxyAyyzxxwxyA
11 9 10 bitri z=AwyyzxxwxyA
12 11 exbii zz=AwzyyzxxwxyA
13 7 12 bitri AwVzyyzxxwxyA
14 6 13 sylibr xzyxyAy=zAwV
15 4 14 simplbiim FunAAwV
16 3 15 vtoclg BCFunAABV
17 16 impcom FunABCABV