Metamath Proof Explorer


Theorem funpsstri

Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011)

Ref Expression
Assertion funpsstri FunHFHGHdomFdomGdomGdomFFGF=GGF

Proof

Step Hyp Ref Expression
1 funssres FunHFHHdomF=F
2 1 ex FunHFHHdomF=F
3 funssres FunHGHHdomG=G
4 3 ex FunHGHHdomG=G
5 2 4 anim12d FunHFHGHHdomF=FHdomG=G
6 ssres2 domFdomGHdomFHdomG
7 ssres2 domGdomFHdomGHdomF
8 6 7 orim12i domFdomGdomGdomFHdomFHdomGHdomGHdomF
9 sseq12 HdomF=FHdomG=GHdomFHdomGFG
10 sseq12 HdomG=GHdomF=FHdomGHdomFGF
11 10 ancoms HdomF=FHdomG=GHdomGHdomFGF
12 9 11 orbi12d HdomF=FHdomG=GHdomFHdomGHdomGHdomFFGGF
13 8 12 imbitrid HdomF=FHdomG=GdomFdomGdomGdomFFGGF
14 5 13 syl6 FunHFHGHdomFdomGdomGdomFFGGF
15 14 3imp FunHFHGHdomFdomGdomGdomFFGGF
16 sspsstri FGGFFGF=GGF
17 15 16 sylib FunHFHGHdomFdomGdomGdomFFGF=GGF