Metamath Proof Explorer


Theorem funresdfunsn

Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018)

Ref Expression
Assertion funresdfunsn FunFXdomFFVXXFX=F

Proof

Step Hyp Ref Expression
1 funrel FunFRelF
2 resdmdfsn RelFFVX=FdomFX
3 1 2 syl FunFFVX=FdomFX
4 3 adantr FunFXdomFFVX=FdomFX
5 4 uneq1d FunFXdomFFVXXFX=FdomFXXFX
6 funfn FunFFFndomF
7 fnsnsplit FFndomFXdomFF=FdomFXXFX
8 6 7 sylanb FunFXdomFF=FdomFXXFX
9 5 8 eqtr4d FunFXdomFFVXXFX=F