Metamath Proof Explorer


Theorem funssxp

Description: Two ways of specifying a partial function from A to B . (Contributed by NM, 13-Nov-2007)

Ref Expression
Assertion funssxp FunFFA×BF:domFBdomFA

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 1 biimpi FunFFFndomF
3 rnss FA×BranFranA×B
4 rnxpss ranA×BB
5 3 4 sstrdi FA×BranFB
6 2 5 anim12i FunFFA×BFFndomFranFB
7 df-f F:domFBFFndomFranFB
8 6 7 sylibr FunFFA×BF:domFB
9 dmss FA×BdomFdomA×B
10 dmxpss domA×BA
11 9 10 sstrdi FA×BdomFA
12 11 adantl FunFFA×BdomFA
13 8 12 jca FunFFA×BF:domFBdomFA
14 ffun F:domFBFunF
15 14 adantr F:domFBdomFAFunF
16 fssxp F:domFBFdomF×B
17 xpss1 domFAdomF×BA×B
18 16 17 sylan9ss F:domFBdomFAFA×B
19 15 18 jca F:domFBdomFAFunFFA×B
20 13 19 impbii FunFFA×BF:domFBdomFA