Metamath Proof Explorer


Theorem funtp

Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses funtp.1 AV
funtp.2 BV
funtp.3 CV
funtp.4 DV
funtp.5 EV
funtp.6 FV
Assertion funtp ABACBCFunADBECF

Proof

Step Hyp Ref Expression
1 funtp.1 AV
2 funtp.2 BV
3 funtp.3 CV
4 funtp.4 DV
5 funtp.5 EV
6 funtp.6 FV
7 1 2 4 5 funpr ABFunADBE
8 3 6 funsn FunCF
9 7 8 jctir ABFunADBEFunCF
10 4 5 dmprop domADBE=AB
11 df-pr AB=AB
12 10 11 eqtri domADBE=AB
13 6 dmsnop domCF=C
14 12 13 ineq12i domADBEdomCF=ABC
15 disjsn2 ACAC=
16 disjsn2 BCBC=
17 15 16 anim12i ACBCAC=BC=
18 undisj1 AC=BC=ABC=
19 17 18 sylib ACBCABC=
20 14 19 eqtrid ACBCdomADBEdomCF=
21 funun FunADBEFunCFdomADBEdomCF=FunADBECF
22 9 20 21 syl2an ABACBCFunADBECF
23 22 3impb ABACBCFunADBECF
24 df-tp ADBECF=ADBECF
25 24 funeqi FunADBECFFunADBECF
26 23 25 sylibr ABACBCFunADBECF