Metamath Proof Explorer


Theorem fununiq

Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses fununiq.1 AV
fununiq.2 BV
fununiq.3 CV
Assertion fununiq FunFAFBAFCB=C

Proof

Step Hyp Ref Expression
1 fununiq.1 AV
2 fununiq.2 BV
3 fununiq.3 CV
4 dffun2 FunFRelFxyzxFyxFzy=z
5 breq12 x=Ay=BxFyAFB
6 5 3adant3 x=Ay=Bz=CxFyAFB
7 breq12 x=Az=CxFzAFC
8 7 3adant2 x=Ay=Bz=CxFzAFC
9 6 8 anbi12d x=Ay=Bz=CxFyxFzAFBAFC
10 eqeq12 y=Bz=Cy=zB=C
11 10 3adant1 x=Ay=Bz=Cy=zB=C
12 9 11 imbi12d x=Ay=Bz=CxFyxFzy=zAFBAFCB=C
13 12 spc3gv AVBVCVxyzxFyxFzy=zAFBAFCB=C
14 1 2 3 13 mp3an xyzxFyxFzy=zAFBAFCB=C
15 4 14 simplbiim FunFAFBAFCB=C