Metamath Proof Explorer


Theorem fusgredgfi

Description: In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses fusgredgfi.v V=VtxG
fusgredgfi.e E=EdgG
Assertion fusgredgfi GFinUSGraphNVeE|NeFin

Proof

Step Hyp Ref Expression
1 fusgredgfi.v V=VtxG
2 fusgredgfi.e E=EdgG
3 2 fvexi EV
4 rabexg EVeE|NeV
5 3 4 mp1i GFinUSGraphNVeE|NeV
6 1 isfusgr GFinUSGraphGUSGraphVFin
7 hashcl VFinV0
8 6 7 simplbiim GFinUSGraphV0
9 8 adantr GFinUSGraphNVV0
10 fusgrusgr GFinUSGraphGUSGraph
11 1 2 usgredgleord GUSGraphNVeE|NeV
12 10 11 sylan GFinUSGraphNVeE|NeV
13 hashbnd eE|NeVV0eE|NeVeE|NeFin
14 5 9 12 13 syl3anc GFinUSGraphNVeE|NeFin