Metamath Proof Explorer


Theorem fusgrmaxsize

Description: The maximum size of a finite simple graph with n vertices is ( ( ( n - 1 ) * n ) / 2 ) . See statement in section I.1 of Bollobas p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 14-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V=VtxG
fusgrmaxsize.e E=EdgG
Assertion fusgrmaxsize GFinUSGraphE(V2)

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V=VtxG
2 fusgrmaxsize.e E=EdgG
3 1 isfusgr GFinUSGraphGUSGraphVFin
4 cusgrexg VFineVeComplUSGraph
5 4 adantl GUSGraphVFineVeComplUSGraph
6 1 fvexi VV
7 vex eV
8 6 7 opvtxfvi VtxVe=V
9 8 eqcomi V=VtxVe
10 eqid EdgVe=EdgVe
11 1 2 9 10 sizusglecusg GUSGraphVeComplUSGraphEEdgVe
12 11 adantlr GUSGraphVFinVeComplUSGraphEEdgVe
13 9 10 cusgrsize VeComplUSGraphVFinEdgVe=(V2)
14 breq2 EdgVe=(V2)EEdgVeE(V2)
15 14 biimpd EdgVe=(V2)EEdgVeE(V2)
16 13 15 syl VeComplUSGraphVFinEEdgVeE(V2)
17 16 expcom VFinVeComplUSGraphEEdgVeE(V2)
18 17 adantl GUSGraphVFinVeComplUSGraphEEdgVeE(V2)
19 18 imp GUSGraphVFinVeComplUSGraphEEdgVeE(V2)
20 12 19 mpd GUSGraphVFinVeComplUSGraphE(V2)
21 5 20 exlimddv GUSGraphVFinE(V2)
22 3 21 sylbi GFinUSGraphE(V2)