Metamath Proof Explorer


Theorem fvco3d

Description: Value of a function composition. Deduction form of fvco3 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvco3d.1 φG:AB
fvco3d.2 φCA
Assertion fvco3d φFGC=FGC

Proof

Step Hyp Ref Expression
1 fvco3d.1 φG:AB
2 fvco3d.2 φCA
3 fvco3 G:ABCAFGC=FGC
4 1 2 3 syl2anc φFGC=FGC