Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvimacnvi
Next ⟩
fvimacnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvimacnvi
Description:
A member of a preimage is a function value argument.
(Contributed by
NM
, 4-May-2007)
Ref
Expression
Assertion
fvimacnvi
⊢
Fun
⁡
F
∧
A
∈
F
-1
B
→
F
⁡
A
∈
B
Proof
Step
Hyp
Ref
Expression
1
snssi
⊢
A
∈
F
-1
B
→
A
⊆
F
-1
B
2
funimass2
⊢
Fun
⁡
F
∧
A
⊆
F
-1
B
→
F
A
⊆
B
3
1
2
sylan2
⊢
Fun
⁡
F
∧
A
∈
F
-1
B
→
F
A
⊆
B
4
fvex
⊢
F
⁡
A
∈
V
5
4
snss
⊢
F
⁡
A
∈
B
↔
F
⁡
A
⊆
B
6
cnvimass
⊢
F
-1
B
⊆
dom
⁡
F
7
6
sseli
⊢
A
∈
F
-1
B
→
A
∈
dom
⁡
F
8
funfn
⊢
Fun
⁡
F
↔
F
Fn
dom
⁡
F
9
fnsnfv
⊢
F
Fn
dom
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
=
F
A
10
8
9
sylanb
⊢
Fun
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
=
F
A
11
7
10
sylan2
⊢
Fun
⁡
F
∧
A
∈
F
-1
B
→
F
⁡
A
=
F
A
12
11
sseq1d
⊢
Fun
⁡
F
∧
A
∈
F
-1
B
→
F
⁡
A
⊆
B
↔
F
A
⊆
B
13
5
12
bitrid
⊢
Fun
⁡
F
∧
A
∈
F
-1
B
→
F
⁡
A
∈
B
↔
F
A
⊆
B
14
3
13
mpbird
⊢
Fun
⁡
F
∧
A
∈
F
-1
B
→
F
⁡
A
∈
B