Metamath Proof Explorer


Theorem fvimacnvi

Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007)

Ref Expression
Assertion fvimacnvi FunFAF-1BFAB

Proof

Step Hyp Ref Expression
1 snssi AF-1BAF-1B
2 funimass2 FunFAF-1BFAB
3 1 2 sylan2 FunFAF-1BFAB
4 fvex FAV
5 4 snss FABFAB
6 cnvimass F-1BdomF
7 6 sseli AF-1BAdomF
8 funfn FunFFFndomF
9 fnsnfv FFndomFAdomFFA=FA
10 8 9 sylanb FunFAdomFFA=FA
11 7 10 sylan2 FunFAF-1BFA=FA
12 11 sseq1d FunFAF-1BFABFAB
13 5 12 bitrid FunFAF-1BFABFAB
14 3 13 mpbird FunFAF-1BFAB