Metamath Proof Explorer


Theorem fvmptrabfv

Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022)

Ref Expression
Hypotheses fvmptrabfv.f F=xVyGx|φ
fvmptrabfv.r x=Xφψ
Assertion fvmptrabfv FX=yGX|ψ

Proof

Step Hyp Ref Expression
1 fvmptrabfv.f F=xVyGx|φ
2 fvmptrabfv.r x=Xφψ
3 fveq2 x=XGx=GX
4 3 2 rabeqbidv x=XyGx|φ=yGX|ψ
5 fvex GXV
6 5 rabex yGX|ψV
7 4 1 6 fvmpt XVFX=yGX|ψ
8 fvprc ¬XVFX=
9 fvprc ¬XVGX=
10 9 rabeqdv ¬XVyGX|ψ=y|ψ
11 rab0 y|ψ=
12 10 11 eqtr2di ¬XV=yGX|ψ
13 8 12 eqtrd ¬XVFX=yGX|ψ
14 7 13 pm2.61i FX=yGX|ψ