Metamath Proof Explorer


Theorem fvn0fvelrnOLD

Description: Obsolete version of fvn0fvelrn as of 13-Jan-2025. (Contributed by Alexander van der Vekens, 22-Jul-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion fvn0fvelrnOLD FXFXranF

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 FXXdomFFunFX
2 eldmressnsn XdomFXdomFX
3 fvelrn FunFXXdomFXFXXranFX
4 pm3.2 FXXranFXXdomFFXXranFXXdomF
5 3 4 syl FunFXXdomFXXdomFFXXranFXXdomF
6 5 ex FunFXXdomFXXdomFFXXranFXXdomF
7 6 com13 XdomFXdomFXFunFXFXXranFXXdomF
8 2 7 mpd XdomFFunFXFXXranFXXdomF
9 8 imp XdomFFunFXFXXranFXXdomF
10 fvressn XdomFFXX=FX
11 10 eleq1d XdomFFXXranFXFXranFX
12 fvrnressn XdomFFXranFXFXranF
13 11 12 sylbid XdomFFXXranFXFXranF
14 13 impcom FXXranFXXdomFFXranF
15 1 9 14 3syl FXFXranF