Metamath Proof Explorer


Theorem fvrnressn

Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion fvrnressn XVFXranFXFXranF

Proof

Step Hyp Ref Expression
1 df-ima FX=ranFX
2 1 eleq2i FXFXFXranFX
3 opeq1 x=XxFX=XFX
4 3 eleq1d x=XxFXFXFXF
5 4 spcegv XVXFXFxxFXF
6 fvex FXV
7 elimasng XVFXVFXFXXFXF
8 6 7 mpan2 XVFXFXXFXF
9 elrn2g FXVFXranFxxFXF
10 6 9 mp1i XVFXranFxxFXF
11 5 8 10 3imtr4d XVFXFXFXranF
12 2 11 biimtrrid XVFXranFXFXranF